
AppBench: Benchmarking AI-Generated Web
Applications

Ethan Hellman
Department of Computer Science

Stanford University
hellman1@stanford.edu

Brendan McLaughlin
Department of Computer Science

Stanford University
bmc0407@stanford.edu

Abhinav Lalwani
Department of Computer Science

Stanford University
lalwani@stanford.edu

Belinda Mo
Department of Computer Science

Stanford University
bmo98@stanford.edu

Abstract

Recent advances in large language models (LLMs) have led to significant progress
in code generation, with frontier models achieving increasingly human-like per-
formance on a range of programming benchmarks [3, 16]. As evaluation has
evolved from function-level tasks to complex, real-world software engineering
challenges [12, 5], web application development has emerged as a particularly
promising domain—offering the potential to democratize software creation through
natural language prompts. However, despite the proliferation of benchmarks evalu-
ating LLMs across various code domains [19, 2], no existing framework holistically
assesses an AI system’s ability to generate functional, usable, and human-aligned
web applications. We introduce AppBench, a multi-dimensional benchmark that
evaluates AI-generated web applications via automated interaction simulation and
structured reasoning, inspired by principles from user experience (UX) design.
AppBench is, to our knowledge, the first comprehensive framework to standard-
ize the evaluation of AI-generated web interfaces in a scalable, automatic, and
user-centric way.

1 Introduction

Large language models (LLMs) have dramatically expanded the range of tasks AI systems can
perform—particularly in software development, where frontier models are now capable of producing
multi-file programs and resolving real-world issues [3, 16, 12]. Among these, web application
generation has emerged as a particularly compelling domain, given its broad accessibility and the
increasing availability of LLM-based tools that can scaffold entire interfaces from a single natural
language prompt.

But while these capabilities are advancing rapidly, evaluation methods have not kept pace. Most
benchmarks remain focused on function-level correctness or project-scale bug resolution [5?], and
are ill-suited for assessing the usability of interactive, user-facing applications. A web app is more
than just working code—it’s an experience that must support intuitive interaction, logical navigation,
and visual coherence. Measuring these qualities requires more than unit tests; it requires reasoning
about how real users engage with the system.

In this paper, we introduce AppBench, a benchmark designed to fill this gap. Rather than evaluating
static code correctness, AppBench simulates structured user interaction—spanning navigation, state

Stanford CS 329A: Self-Improving AI Agents, Winter 2025.

transitions, interface responsiveness, and content validation—to evaluate the usability and task
completion potential of AI-generated web applications. Drawing from UX design principles and
evaluation heuristics, AppBench operationalizes user expectations into automated yet behaviorally
grounded scoring scripts.

Our contributions are threefold: (1) we identify and formalize a gap in the LLM evaluation landscape
centered on interactive, user-aligned applications; (2) we introduce a novel simulation-based evalua-
tion framework for web applications, built on a suite of dynamic task plans and heuristics; and (3) we
demonstrate the feasibility of automated UX evaluation by showing strong alignment with human
judgments across several models and agentic systems.

Ultimately, we hope AppBench can serve as a tool for guiding the development of more capable,
usable, and human-aligned generative systems—pushing the frontier beyond code correctness toward
the design of meaningful user experiences.

2 Related Work

As LLMs increasingly move from code assistants to autonomous agents capable of end-to-end
software generation, a critical question arises: how should we evaluate their output when that output
is not just code, but experience? This paper sits at the intersection of several important and rapidly
evolving research frontiers—code generation, web interaction agents, human-computer interaction
(HCI), and AI benchmarking itself—and our work reflects this broader confluence.

Code generation and full-stack evaluation. Early work in LLM-based code generation established
foundational benchmarks for correctness at the function level, such as HumanEval [3] and APPS [8].
Subsequent efforts like CodeXGLUE [19], DS-1000 [14], and MultiPL-E [2] expanded the benchmark
space to include multi-language, domain-specific, and task-diverse code understanding. Recent work
like SWE-bench [12], ClassEval [5], and InterCode [25] has pushed toward project-scale and bug-
resolution tasks, recognizing the importance of evaluating models in messier, more human-authored
software contexts.

Despite these advances, most code generation benchmarks still center on correctness as judged by
test cases or unit assertions. As recent critiques have noted [17, 27], high test pass rates may not
translate to reliable or meaningful software—especially in user-facing domains.

Web-based agents and interactive benchmarks. In parallel, the emergence of LLM-powered
agents has led to benchmarks focused on web interaction. WebArena [28], Mind2Web [4], Agent-
Bench [18], and WebShop [26] evaluate an LLM’s ability to act in simulated or real browser
environments, often through reinforcement learning or instruction-following paradigms. These tasks
help assess navigation, search, and goal completion across open-ended web environments.

However, these frameworks evaluate interaction with the web, not the capacity to generate usable
web applications. Moreover, they often assume static, pre-designed interfaces—sidestepping the
core challenge we address: whether a model can not only understand but instantiate usable human-
computer interfaces from scratch.

UX evaluation and HCI principles. From the HCI community, decades of work on usability
testing [20], UI evaluation automation [10], and quantitative design assessment [15, 9, 7, 21] provide
foundational insight into what makes an interface "usable." Frameworks like WebQEM [23] and
methods in layout quality assessment [21] illustrate structured ways to judge effectiveness, efficiency,
and aesthetics of design. Yet these traditions rarely intersect with automated code evaluation, and
current LLM benchmarks generally overlook these concerns entirely.

Recent efforts like UIcrit [6] have begun bridging these spaces, building datasets for UI design
critique. Still, they rely on static screenshots or human annotations, limiting scalability.

Simulation-based evaluation and the road ahead. The idea of using simulation to evaluate
AI systems has gained traction in NLP [13], agent benchmarks [18], and even in instructional
testing [22, 24]. As AI-generated content becomes more complex, evaluation frameworks are
evolving beyond static metrics toward dynamic, behaviorally grounded testing. SimulBench [11]
exemplifies this shift by using simulation tasks to assess creativity and procedural understanding.

2

Our work joins this trend by applying simulation-based evaluation to the web application domain. By
using interaction agents to emulate real users and evaluate LLM outputs not only as programs but
as experiences, AppBench brings together ideas from AI testing, HCI, and design evaluation into a
unified and scalable framework.

3 Methodology

AppBench is a preliminary benchmark composed of 9 diverse and challenging app-generation tasks.
Each task in the dataset contains 1) a natural language user query and 2) an executable evaluation
script, tailored to the user query, that outputs a scalar value quality score with a corresponding natural
language justification that is calibrated to align closely with human evaluation of the web application.

3.1 Task Selection

In selecting user queries to include in the dataset, we aim to test model capability along each of the
following six axes of web development: (1) UI Complexity – visual and structural sophistication;
(2) Feature Coverage & Functionality – breadth of supported capabilities; (3) State Management
– handling of user interactions and data persistence; (4) API Integration – ability to connect with
external services; (5) Cross-Page Functionality – navigation and multi-page interactions; and (6)
Data Processing – handling and transformation of structured data.

We note the importance of taking a more empirical approach to weighting the importance of each
of these axes such that our dataset properly reflects their real-world importance. Additionally, we
select tasks that range in difficulty from L0 (basic static apps) to L4 (apps that demand mastery of
advanced web development skills) (full task descriptions in Appendix A.1).

Below is an example prompt from the AppBench dataset:

• L2: "Generate a basic newsletter sign-up website where the user can input their email and
name, click submit, and receive a welcome email. Use the MailSlurp SMTP client with the
following credentials: [omitted for brevity]"

User queries are also diverse in their length, sophistication, and specificity. As seen in L2 above, for
user queries that imply usage of APIs that are not publicly accessible, we provide credentials in the
user query.

3.2 Mapping User Queries to Evaluation Plans

AppBench translates natural language app requirements into structured evaluation plans through a
systematic process that preserves the intent, constraints, and expectations embedded in the original
query. To illustrate this approach, we analyze the following example query (additional examples in
Appendix A.2):

Develop a multi-page app where the home page displays a list of products (each showing a
name, price, and thumbnail image) fetched from an API. Clicking a product navigates to a detail
page with its full description, larger image, and ’Add to Cart’ button. The app should have a
persistent cart icon in the header showing the number of items in cart. Cart state should persist
across navigation and page refreshes.

Figure 1: Example user query with highlighted evaluation axes: Cross-Page Functionality, UI
Components, API Integration, Navigation, State Management

3.2.1 Evaluation Checklist Extraction

We first construct a sequential evaluation checklist that captures both explicit and implicit require-
ments. This checklist serves as an intermediate representation between the user query and the final
evaluation graph. For our example query, the human evaluators organically identified the following
checklist items:

3

Core Requirements (Explicit)
• Has home page with list of products
• Each product shows name, price, thumbnail at least
• There is a persistent header with an add to cart button
• When you click a product, you navigate to a new page
• That new page has a description, larger image, and an add to cart button
• The persistent cart icon should still be in the header on detail page
• If you click add to cart, the cart icon shows a 1 item added to cart
• If you refresh or go back page, the cart state persists
Quality-Enhancing Features (Implicit)
• There is a reasonable title for the website in the header or on home page
• There is a back page button to navigate back to home page
• User can add multiple items at once to cart using a quantity incrementer
• User can view the items in cart (by clicking on cart icon)
• User can remove items from cart

Figure 2: Sequential evaluation checklist derived from user query with highlighted categories: UI
Components, Navigation, State Management

3.2.2 Dependency Modeling and Graph Construction

The sequential checklist reveals natural dependencies between requirements. For instance, evaluating
the "add to cart" functionality first requires successful navigation to a product detail page, which
itself depends on the existence of clickable product listings on the home page. These dependencies
form the basis of our evaluation graph.

Figure 3: Evaluation dependency graph for the l3-add-to-cart example. Pink nodes represent explicit
core requirements, while purple nodes represent implicit quality-enhancing features. Edges indicate
dependencies between requirements.

The evaluation graph models user journeys through the application, with each node representing a
testable requirement and each edge representing a dependency. Core requirements (pink nodes) are
prioritized in the evaluation while quality-enhancing features (purple nodes) contribute additional
points to the overall assessment.

3.2.3 Evaluation Harness

Our evaluation harness enables us to convert organically constructed evaluation graphs into executable
scripts by providing a shared toolbox of flexible evaluation primitives that can be chained together to
evaluate each graph node.

Some common evaluation primitives include:

4

1. Multimodal LLM Reasoning – Screenshots paired with natural language prompts provide
state observations without DOM dependencies

2. Adaptive LLM-Augmented Browser Interaction – Stagehand [1] enables natural language
commands for app manipulation (e.g., “click the add to cart button”)

3. Network Manipulation – API interception allows testing error states and edge cases
(implementation details in Appendix A.3)

At the top of each script, each task’s assessment criteria are defined in a structured configuration
that maps directly to the evaluation graph, with weighted categories and subcategories (details in
Appendix A.4.

By mapping natural language queries to executable evaluation graphs in this manner, AppBench
creates a flexible and scalable framework for evaluating AI-generated web applications across various
dimensions of functionality, usability, and alignment with user intent.

4 Experiments

4.1 Model Performance

Figure 4: Individual agent performance across
all examples.

Figure 5: Agent performance across each level
by agent type.

To test the model performance, we operated in the “one-shot” regime: each agent was prompted
with the same prompt and given one turn to build a functioning web application. For Claude 3.7
and GPT 4.5, they were fed context that first detailed the default structure of a Next.js application
created as a scaffold to work with (details in Appendix A.5). This was done to help these models
understand the task better and avoid generations that were overly simplistic and would necessarily
under-perform compared to their agentic counterparts. All generations were then evaluated using the
same prompt-specific evaluator. Figure 4 shows all scores per agent, per prompt. The same scores
have been averaged across model type (Figure 5) for further analysis.

4.2 Evaluator Performance

Metric Value
Mean MSE 0.0302
Mean MAE 0.1313
Pearson Corr. 0.8173
Spearman Corr. 0.6827
Table 1: Overall Metrics

Agent MSE
Service 1 0.0466
Service 2 0.0307
Service 3 0.0303
Service 4 0.0160
Claude 3.7 0.0199
GPT 4.5 0.0179
CodeAct 0.0501

Table 2: MSE per Agent

Prompt MSE
l0-about-us 0.0194
l0-welcome-page 0.0179
l1-color-switcher 0.0194
l1-weather-search 0.0163
l2-bookstore 0.0212
l2-add-to-cart 0.0042
l3-food-order 0.0751
l3-newsletter 0.0653
l4-whiteboard 0.0334

Table 3: MSE per Prompt

5

Figure 6: Human vs. Evaluator Scoring

In order to test our approach in creating intelli-
gent evaluators, for each web application genera-
tion human evaluations were conducted. The hu-
man evaluation consisted of 3 independent eval-
uators checking over the web applications and
reporting their scores. The human evaluations
were conducted without knowing the evaluation
results from the previous experiment. Subse-
quent analysis can be seen in Tables 1, 2, and
3. The correlation between human and machine
scores is visualized in Figure 6.

5 Discussion

Our evaluation reveals several promising—and in some cases, surprising—insights into the current
state of AI-generated web applications. As shown in Figure 4, model performance declines steadily
as task complexity increases, confirming that AppBench captures a meaningful gradient of difficulty
across core web development skills. This aligns with broader trends in LLM research, where strong
performance on simpler tasks often masks brittleness on more structured, high-context, or interactive
problems.

One particularly notable finding is the relatively narrow margin between zero-shot outputs and
fully agentic systems (Figure 5). While we expected agent frameworks to significantly outperform
single-prompt completions—particularly on higher-level tasks—the performance gap was modest,
and in some cases negligible. This raises important questions: Are today’s agentic pipelines offering
meaningful returns on their added complexity and inference cost? Or are we nearing diminishing
returns without deeper architectural or supervisory advances?

This finding becomes especially salient at higher difficulty levels such as L4, where most sys-
tems—regardless of orchestration—struggle to generate usable experiences. At such low performance
bands, the difference between a partially functional and a completely broken web app becomes moot
from a user experience standpoint. Although agentic systems occasionally produce cleaner codebases
or better-structured designs, they do not consistently result in applications that are more usable or
functionally successful. The data suggests that, at least for now, the gap between well-engineered
agents and high-performing zero-shot models like Claude or GPT remains surprisingly narrow.

Equally encouraging is the performance of our evaluation harness. As shown in Table 1 and Figure 6,
our scoring pipeline correlates strongly with human judgments—demonstrating that simulation-based
UX evaluation can meaningfully approximate human assessment. This is not only a technical valida-
tion, but a conceptual one: automation and user-centered design can coexist, and even complement
each other in benchmark construction.

There remains substantial room to refine and expand our evaluator suite. Calibration with expert
UX reviewers could improve threshold sensitivity, enable more nuanced detection of failure modes,
and enhance inter-model differentiation—particularly in mid-performance bands where outputs are
neither clearly successful nor clearly broken. With broader scale, we may also better characterize the
nature of common failure modes across systems. While AppBench spans a diverse range of task types,
its limited scope makes it premature to draw strong generalizations. Still, early patterns are emerging:
closed-source agentic systems tend to produce more visually polished interfaces, yet they do not
substantially outperform zero-shot models in supporting task completion. This underscores a key
insight—functional usability and visual appeal are distinct axes of quality, and agentic infrastructure
alone is not yet sufficient to close the gap.

6

6 Conclusion

As generative models expand their role from code completion to full-stack application development,
the need for benchmarks that reflect real user expectations becomes increasingly urgent. In this work,
we introduced AppBench, a novel evaluation framework for AI-generated web applications that
foregrounds usability, interactivity, and goal-completion—qualities essential to delivering functioning
software experiences.

Our approach reframes benchmark design around the end user, leveraging interaction simulation and
structured UX heuristics to evaluate AI outputs not just as code, but as experiences. Through both
quantitative and qualitative analysis, we demonstrated that AppBench can reliably capture differences
in model performance across varying levels of task complexity, while remaining strongly correlated
with human evaluation.

While our current benchmark is limited in scale, we believe AppBench offers a compelling foundation
for evaluating human-aligned software generation. As future work explores larger datasets, automated
evaluator construction, and tighter coupling with real-world UX paradigms, we hope this line of
research inspires a shift toward benchmarks that reflect how AI systems will actually be used—in
practice, by people.

References
[1] BrowserBase. Stagehand: AI-powered browser automation. GitHub repository, 2024. [Online].

Available: https://github.com/browserbase/stagehand.

[2] Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, Arjun Guha,
Michael Greenberg, and Abhinav Jangda. Multipl-e: A scalable and extensible approach to
benchmarking neural code generation, 2022.

[3] Mark Chen, Jerry Tworek, Heewoo Jun, et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

[4] Xiang Deng, Yu Gu, Boyuan Zheng, et al. Mind2web: Towards a generalist agent for the web,
2023.

[5] Xueying Du, Mingwei Liu, Kaixin Wang, et al. Classeval: A manually-crafted benchmark for
evaluating llms on class-level code generation, 2023.

[6] Peitong Duan, Chin-yi Chen, Gang Li, et al. Uicrit: Enhancing automated design evaluation
with a uicritique dataset, 2024.

[7] Basma K. Eldrandaly, Ahmed A. Al, Ripon K. Chakrabortty, and Mohamed Abdel-Basset. An
efficient framework for evaluating the usability of academic websites: Calibration, validation,
analysis, and methods. Neutrosophic Sets and Systems, 53(1), 2023.

[8] Dan Hendrycks, Steven Basart, Saurav Kadavath, et al. Measuring coding challenge competence
with apps, 2021.

[9] Huicong Hu, Ying Liu, Wen Feng Lu, and Xin Guo. A quantitative aesthetic measurement
method for product appearance design. Advanced Engineering Informatics, 53:101644, 2022.

[10] Melody Y. Ivory and Marti A. Hearst. The state of the art in automating usability evaluation of
user interfaces. ACM Comput. Surv., 33(4):470–516, 2001.

[11] Qi Jia, Xiang Yue, Tianyu Zheng, et al. Simulbench: Evaluating language models with creative
simulation tasks, 2024.

[12] Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024.

[13] Douwe Kiela, Max Bartolo, Yixin Nie, et al. Dynabench: Rethinking benchmarking in nlp,
2021.

7

https://github.com/browserbase/stagehand

[14] Yuhang Lai, Chengxi Li, Yiming Wang, et al. Ds-1000: A natural and reliable benchmark for
data science code generation, 2022.

[15] Xiaosong Li, Ye Liu, Zizhou Fan, and Will Li. A quantitative approach in heuristic evaluation
of e-commerce websites. International Journal of Artificial Intelligence amp; Applications,
9(1):01–13, January 2018.

[16] Yujia Li, David Choi, Junyoung Chung, et al. Competition-level code generation with alphacode.
Science, 378(6624):1092–1097, 2022.

[17] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation, 2023.

[18] Xiao Liu, Hao Yu, Hanchen Zhang, et al. Agentbench: Evaluating llms as agents, 2023.

[19] Shuai Lu, Daya Guo, Shuo Ren, et al. Codexglue: A machine learning benchmark dataset for
code understanding and generation, 2021.

[20] Jakob Nielsen and Rolf Molich. Heuristic evaluation of user interfaces. SIGCHI Bulletin,
21(1):249–256, 1990.

[21] Yumei Pu, Danfei Liu, Siyuan Chen, and Yunfei Zhong. Research progress on the aesthetic
quality assessment of complex layout images based on deep learning. Applied Sciences, 13(17),
2023.

[22] Jon Saad-Falcon, Rajan Vivek, William Berrios, Nandita Shankar Naik, Matija Franklin, Bertie
Vidgen, Amanpreet Singh, Douwe Kiela, and Shikib Mehri. Lmunit: Fine-grained evaluation
with natural language unit tests, 2024.

[23] K. K. Singh. A quantitative method for evaluation of websites quality using webqem tool. 2014.

[24] Zejun Wang, Kaibo Liu, Ge Li, and Zhi Jin. Hits: High-coverage llm-based unit test generation
via method slicing, 2024.

[25] John Yang, Akshara Prabhakar, Karthik Narasimhan, and Shunyu Yao. Intercode: Standardizing
and benchmarking interactive coding with execution feedback, 2023.

[26] Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents, 2023.

[27] Zibin Zheng, Kaiwen Ning, Qingyuan Zhong, Jiachi Chen, Wenqing Chen, Lianghong Guo,
Weicheng Wang, and Yanlin Wang. Towards an understanding of large language models in
software engineering tasks, 2024.

[28] Shuyan Zhou, Frank F. Xu, Hao Zhu, et al. Webarena: A realistic web environment for building
autonomous agents, 2024.

A Appendix

A.1 Task Definitions and Complexity Levels

Table 4 provides a breakdown of the 9 AppBench tasks by complexity level and primary evaluation
axes.

The complexity levels correspond to increasing difficulty:

• L0: Static applications with minimal interactivity
• L1: Basic interactivity with simple state management
• L2: Multi-page applications with navigation and moderate state management
• L3: Complex state management across multiple views with API integration
• L4: Advanced applications requiring sophisticated state management, real-time updates,

and complex user interactions

8

Task ID Level Primary Axes Description
l0-about-us L0 1, 2 Static about page with responsive

design
l0-welcome-page L0 1, 2 Minimal landing page with hero sec-

tion
l1-color-switcher L1 1, 2, 3 Theme switcher with state manage-

ment
l1-weather-search L1 1, 3, 4 Weather app with API integration
l2-bookstore L2 1, 2, 5, 6 Multi-page book catalog
l2-add-to-cart L2 1, 3, 5 Simple e-commerce with cart func-

tionality
l3-food-order L3 1, 2, 3, 5, 6 Stateful online restaurant menu
l3-newsletter L3 1, 3, 4 Newsletter signup with email inte-

gration
l4-whiteboard L4 1, 2, 3, 4, 6 Collaborative drawing app with per-

sistent state
Table 4: AppBench tasks by complexity level and evaluation axes

A.2 Complete Task Queries

Table 5 provides the complete text of all task queries in the AppBench dataset. For space reasons, we
show evaluation graphs only for the add-to-cart example (Figure 3) in the main text.

A.3 Evaluation Primitives Implementation

AppBench implements a set of core evaluation primitives that can be flexibly combined to assess
any node in the evaluation graph. These primitives are implemented using a combination of browser
automation and LLM-augmented observation:

A.3.1 Schema-Based Screenshot Evaluation

Our LLMEvaluator class provides structured assessment of application state through screenshots
among other methods:

const uiEval = await this.llmEvaluator.evaluateScreenshot(
screenshot,
weatherUISchema,
"Evaluate the weather app’s UI elements and layout...",
"UI"

);

The evaluator uses strongly typed schemas to ensure quantifiable assessment:

const weatherUISchema = z.object({
has_search: z.boolean(),
has_button: z.boolean(),
layout_score: z.number().min(0).max(getMaxScore(weatherAppConfig, "initialUI", "layout")),
has_title: z.boolean(),
reasoning: z.string(),

});

A.3.2 Error State Validation

A specialized primitive for assessing application responses to error conditions:

const errorEval = await this.llmEvaluator.evaluateErrorState(
screenshot,
testEmptySchema,

9

"empty search submission",
"Errors/Empty"

);

A.3.3 Conditional Test Execution

AppBench implements dependency-aware testing that respects the evaluation graph structure:

// Only proceed with weather tests if basic UI exists
if (uiScore >= 4) {

await this.testWeatherDisplay(stagehand);
await this.testErrorHandling(stagehand);

} else {
this.logger.warn(

"Skipping weather tests due to insufficient UI score",
"WeatherApp"

);
}

This approach prevents cascading failures when fundamental requirements are not met, providing a
more nuanced evaluation that mirrors how human testers would approach application assessment.

A.4 Evaluation Scoring Configuration

Each AppBench evaluator defines a structured scoring configuration that maps directly to the evalua-
tion graph and UX priorities. Below is the example configuration for the weather search application:

const weatherAppConfig: ScoringConfig = {
categories: {

initialUI: {
name: "Initial UI Elements",
maxScore: 8,
subcategories: {

searchInput: { name: "Search Input", maxScore: 2.5 },
searchButton: { name: "Search Button", maxScore: 2.5 },
layout: { name: "Layout Quality", maxScore: 2 },
title: { name: "Weather Title", maxScore: 1 },

},
},
weatherDisplay: {

name: "Weather Display",
maxScore: 15,
subcategories: {

temperature: { name: "Temperature Display", maxScore: 4 },
condition: { name: "Weather Condition", maxScore: 3 },
additionalData: { name: "Additional Data", maxScore: 3 },
quality: { name: "Display Quality", maxScore: 5 },

},
},
errorHandling: {

name: "Error Handling",
maxScore: 4,
subcategories: {

emptySearch: { name: "Empty Search", maxScore: 2 },
invalidCity: { name: "Invalid City", maxScore: 2 },

},
},

},
};

10

This declarative approach allows each evaluator to precisely weight different aspects of the application
according to their importance. Moreover, modifications to score weights and test sections to improve
alignment with human evaluators is made trivial by this implementation. Scores are normalized to a
0-100 scale for consistency across tasks of different complexity.

A.5 Prompting

You are an AI coding agent that builds web applications.
You are given default started code for a next.js built with:
Next.js (version 15.2.3) - A React framework for building web applications
TypeScript - For type-safe JavaScript development
Tailwind CSS - For styling
ESLint - For code linting
The project structure follows Next.js conventions:
my-app/
|-- src/ # Source code directory
| |-- pages/ # Next.js pages directory (routing)
| ‘-- styles/ # CSS and styling files
|-- public/ # Static assets
|-- node_modules/ # Dependencies
|-- package.json # Project configuration and dependencies
|-- tsconfig.json # TypeScript configuration
|-- next.config.ts # Next.js configuration
|-- postcss.config.mjs # PostCSS configuration (for Tailwind)
|-- eslint.config.mjs # ESLint configuration
‘-- .gitignore # Git ignore rules
Key features of the project:
It’s a TypeScript-based Next.js application
Uses modern React (version 19)
Implements Tailwind CSS for styling
Has ESLint configured for code quality
Follows the standard Next.js project structure with a src directory.
Build the following application as described starting from the default code:

11

Task ID Complete User Query
l0-about-us "Design a static ’About Us’ page with a header, descriptive text in a

content section, and a footer with company details."
l0-welcome-
page

"Generate a basic landing page with a header, a centered welcome
message, and a footer. The page should be a warm, welcoming landing
page."

l1-color-
switcher

"Create a simple theme switcher web page where users can toggle be-
tween three color schemes: light, dark, and blue. The page should have a
clear title at the top, followed by three clickable theme buttons arranged
horizontally. Each button should show which theme is currently active.
Below the buttons and include a sample content section with a heading,
short paragraph of text to demonstrate how the theme affects different
elements. When users click a theme button, the entire page (background,
text colors, and button styles) should immediately update to match the
selected theme. Keep everything on a single page with no backend func-
tionality or data persistence needed - just simple state management to
track the current theme."

l1-food-order "Create a single-page web application that contains food items from a
menu. There should be the name of the food and price listed. Without
having to login or create an account, the user should be able to quickly
construct an order by clicking the quantity of a given food item to add
to their order. The bottom of the page should dynamically display the
order items and the total cost of the order."

l2-newsletter "Generate a basic newsletter sign-up website where the user can input
their email and name, click submit, and receive a welcome email. Use
the MailSlurp SMTP client with the following credentials: [omitted for
brevity]"

l2-weather-
search

"Create a page that includes a search box; when a user en-
ters a city name and clicks a button, fetch and display basic
weather data from an the OpenWeatherMap API using this api key:
442b472f13319ac99f6ecb231e3c2fe0"

l3-add-to-cart "Develop a multi-page app where the home page displays a list of prod-
ucts (each showing a name, price, and thumbnail image) fetched from
an API. Clicking a product navigates to a detail page with its full de-
scription, larger image, and ’Add to Cart’ button. The app should have a
persistent cart icon in the header showing the number of items in cart.
Cart state should persist across navigation and page refreshes."

l3-bookstore "Create an app with a landing page containing a search bar for books, and
upon submission, navigate to a results page displaying a list of books
with their titles, authors, and cover images fetched from the Google
Books API. Use this Google API token: [omitted for brevity]."

l4-whiteboard "Create a real-time collaborative whiteboard where users can draw to-
gether. The whiteboard should have a canvas where users can draw with
the mouse, a tool bar with at least 3 different colors to choose from,
and a section that shows the connected users and an invite button that
opens a modal/overlay where the user can copy the unique white board
URL that can be used to join the board from another browser window.
Users on the same board should be able to see live drawing updates to
the whiteboard from other users."
Table 5: Complete user queries for all AppBench tasks

12

	Introduction
	Related Work
	Methodology
	Task Selection
	Mapping User Queries to Evaluation Plans
	Evaluation Checklist Extraction
	Dependency Modeling and Graph Construction
	Evaluation Harness

	Experiments
	Model Performance
	Evaluator Performance

	Discussion
	Conclusion
	Appendix
	Task Definitions and Complexity Levels
	Complete Task Queries
	Evaluation Primitives Implementation
	Schema-Based Screenshot Evaluation
	Error State Validation
	Conditional Test Execution

	Evaluation Scoring Configuration
	Prompting

